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An uncatalyzed one-pot synthesis of N-substituted tetrahydroquinolines was achieved in good yields by
the reaction of quinoline and alkyl/acyl halides with Hantzsch dihydropyridine ester under mild reaction
conditions.
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The reduced form of the nicotinamide adenine dinucleotide
coenzyme [NAD(P)H] plays a vital role in many bioreductions by
transferring a hydride ion or an electron to the surrounding sub-
strates.1 1-Benzyl-1,4-dihydronicotinamide (BNAH), Hantzsch
1,4-dihydro pyridine (DHP), 10-methyl-9,10-dihydroacridine
(AcrH2), and many other 1,4-dihydropyridine derivatives have
been widely used as models of NAD(P)H to mimic the reduction
of various unsaturated compounds such as quinones,2 ketones,3

aldehydes4, and alkenes5. Garden et al.6 have reported the reduc-
tion of certain electron-withdrawing conjugated olefins using Han-
tzsch 1,4-dihydropyridine ester. Hantzsch esters were also used for
the reductive amination of aldehydes and ketones.7 In recent years,
synthetic chemists have made many efforts to develop DHP as a
widely used reducing agent and have obtained good to excellent
results. Hence the use of NAD(P)H model compounds as a class
of mild reducing agent in synthetic organic chemistry is of consid-
erable interest.8

1,2,3,4-Tetrahydroquinoline derivatives have attracted consid-
erable interest due to their importance as synthetic intermediates,
pesticides, and pharmaceutical products with a broad range of
physiological and biological properties.9,10 Although a number
of different methods for the synthesis of tetrahydroquinolines
exist, the most direct approach is the regioselective reduction
of quinolines, which includes heterogeneous or homogeneous
metal-catalyzed hydrogenations, hydroborations, and transfer
hydrogenations.11,12
ll rights reserved.
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al).
On the other hand, only a few reports for the reduction of quin-
olines to tetrahydroquinolines using dihydropyridines are known
in the literature. All these methods involve the use of Bronsted
acid,13 iridium14 as catalysts. Hence, the development of a simple
synthetic method enabling facile access to this heterocycle, is
desirable.

As part of our continued interest in the synthesis of tetrahydro-
quinolines15 and in the application of Hantzsch dihydropyridine
ester in organic synthesis,16 we herein report the one-pot synthesis
of N-substituted tetrahydroquinolines under mild reaction condi-
tions using acyl, benzyl, allyl, and alkyl halides without any cata-
lyst .

In our initial endeavour, we carried out the reaction of quinoline
with acetyl chloride in CH2Cl2. After forming the quinolinium salt,
Hantzsch dihydropyridine was added. The reaction proceeded
smoothly at room temperature without any catalyst and was com-
plete within 30 min (Scheme 1).

In order to investigate the scope and generality of this method-
ology, a variety of acyl/benzyl/allyl/alkyl halides 2 were employed
(Scheme 2). It was observed that under optimized reaction condi-
tions,17 various halides reacted with quinoline forming quinolini-
um salts, which then underwent reduction with Hantzsch
dihydropyridine to afford a series of N-substituted tetrahydroquin-
olines in good yields. The reaction was amenable to a wide range of
halides. The reaction proceeded at a faster rate with acid halides
and was slightly slow with allyl/benzyl/alkyl halides with the
exception of CH3I (about 0.5 h), respectively. The results are sum-
marized in Table 1.

We have also carried out the reaction with 2-methyl and 6-
methyl quinoline to give the products 4 k and 4 l, respectively.
Pyridinium salts do not undergo the reduction with Hantzsch
dihydropyridine.
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Table 1 (continued)

Entry RX (2) Product (4) Time (h) Yielda (%)

5
Br

4e    

N
3.0 78

6 BrPh
N

Ph

4f 

2.5 75

7 Br
N

4g 

2.5 74

8 Br
O

OEt N
O

OEt

4h 

3.0 75

9 CH3I N
CH3

4i 

0.5 74

10 CH3CH2I N

4j 

6.0 75

11 CH3I

4k

N
CH3

CH3 0.5 70

12 CH3I

4l

N
CH3

CH3

0.5 75

a Isolated yield.
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We propose a plausible mechanism for the formation of product
4 (Scheme 3).

In conclusion, we have developed a simple method for the syn-
thesis of N-substituted tetrahydroquinolines without any catalyst
at room temperature. Further merits of this method are its gener-
ality, shorter-reaction time, and easy work-up.
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Spectral data for selected compounds:
1-(3,4-Dihydro-2H-quinolin-1-yl)-ethanone (4a): Yellow liquid. Yield: 73%. 1H
NMR (500 MHz, CDCl3) d 1.94 (q, 2H), 2.20 (s, 3H), 2.70 (t, 2H), 3.78 (t, 2H),
7.15(m 4H,). 13C NMR (125 MHz, CDCl3) d 23.0, 24.0, 26.8, 39.4, 124.3, 125.3,
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C, 75.40; H, 7.48; N, 7.99. Found: C, 75.34; H, 7.43; N, 7.96.
3,4-Dihydro-2H-quinoline-1-carboxylic acid ethyl ester (4b): pale yellow liquid.
Yield: 75%. 1H NMR (500 MHz, CDCl3) d 1.32 (t, 3H), 1.93 (q, 2H), 2.75 (t, 2H),
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3.75 (t, 2H), 4.25 (q, 2H), 6.99 (t, 1H), 7.07 (d, 2H, J = 7.6 Hz), 7.15 (t, 1H). 13C
NMR (125 MHz, CDCl3) d 14.5, 23.4, 27.3, 44.7, 62.0, 109.0, 116.7, 123.2, 127.3,
129.2, 138.2, 171.0. IR mmax: 2938, 1705, 1493, 1375, 1319, 1258, 1204, 1134,
1055, 760. cm�1. Mass (ESI): 252 (M+2Na). Anal. Calcd for C26H21N3O3: C,
84.17; H, 7.65; N, 8.18. Found: C, 84.02; H, 7.61; N, 8.21.
1-Prop-2-ynyl-1,2,3,4-tetrahydro-quinoline (4d): brown liquid. Yield: 75%. 1H
NMR (500 MHz, CDCl3) d 2.02 (q, 2H), 2.15 (t, 1H), 2.77 (t, 2H), 3.30 (t, 2H), 4.02
(d, 2H, J = 2.3 Hz), 6.69 (t, 1H), 6.75 (d, 1H, J = 8.4 Hz), 6.99 (d, 1H, J = 6.8 Hz),
7.12 (t, 1H). 13C NMR (125 MHz, CDCl3) d 22.6, 27.7, 40.7, 49.2, 71.6, 79.7,
112.0, 117.6, 124.0, 126.9, 129.1, 144.6. IR mmax: 3291, 2928, 2842, 1602, 1500,
1454, 1330, 1239, 1191, 748, 645 cm�1. Mass (ESI): 172 (M+1). Anal. Calcd for
C12H13N: C, 84.17; H, 7.65; N, 8.18. Found: C, 84.02; H, 7.61; N, 8.20.
(3,4-Dihydro-2H-quinolin-1-yl)-acetic acid ethyl ester (4h): Brown liquid. Yield:
75%. 1H NMR (500 MHz, CDCl3) d 1.23 (t, 3H), 1.99 (q, 2H), 2.79 (t, 2H), 3.40 (t,
2H,) 3.99 (s, 2H), 4.19 (q, 2H,) 6.41 (d, 1H, J = 7.6 Hz), 6.63 (t, 1H) 6.97 (d, 1H,
J = 6.8 Hz), 7.02 (t, 1H). 13C NMR (125 MHz, CDCl3) d 14.2, 22.3, 27.9, 50.6, 53.2,
60.8, 110.3, 116.7, 122.8, 127.0, 129.1, 144.8, 171.1. IR mmax: 2933, 2842, 1743,
1602, 1503, 1455, 1336, 1184, 1026, 746 cm�1. Mass (ESI): 220 (M+1). Anal.
Calcd for C13H17NO2: C, 71.21; H, 7.81; N, 6.39. Found: C, 71.05; H, 7.77; N,
6.42.


